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A nonlinear electrodynamics Lagrangian is considered and the electric field associated
to an electric point-like charge is derived. The corresponding expression for the total
field energy which has finite value in our model, is obtained. The chiral form of
the Lagrangian is also presented. Topological, finite-energy, spherically symmetric
solutions of the chiral model are studied and some of their properties are discussed.

KEY WORDS: nonlinear electrodynamics; chirality; chiral solitons.

1. INTRODUCTION

Nonlinear models have been of much interest in different branches of physics.
As a well-known example in classical electrodynamics, one could mention the non-
linear model introduced by Born and Infeld (1934). Born-Infeld model has some
interesting properties. In particular, a spherically symmetric field configuration
has a finite energy, in contrast to the conventional (linear) electrodynamics. Born
and Infeld’s theory, contains some arguments about the necessity of a nonlinear
generalization of electrodynamics and possible connection between such theories
and quantum mechanics.

In recent years, nonlinear models are attracting more and more attention.
Skyrme formulated a unified theory for baryons and mesons in terms of a chiral
field (Skyrme, 1955, 1961). His theory analyzes different aspects of baryons and
mesons and also their interactions. We know that in the large-N limit, QCD is
equivalent to an effective meson theory (t’Hooft, 1974; Adkins et al., 1983), like
the Skyrme model where chiral solitons of such theories reproduce the static
properties of real baryons, approximately. Chiral Born-Infeld solitons share this
interesting property.
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Effective meson field theory can be reformulated in terms of the chiral field
U = exp(i φπ .τ

fπ
), where φπ is associated with π -mesons, fπ = 93 MeV is the pion

decay constant and τi’s are the Pauli matrices. Skyrme modified the nonlinear
sigma model by adding a non-minimal term to it, in order to prevent the solitons
from shrinking to zero-size. He introduced the Lagrangian

L = 1

4
f 2

π Tr(∂µU∂µU †) + 1

32e2
Tr[(∂µU )U †, (∂νU )U †]2, (1)

where Lµ = U †∂µU is a Cartan left-invariant form (Zahed and Brown, 1986;
Nikolaev, 1989). The last term which contains the dimensionless parameter e was
introduced by Skyrme to stabilize the soliton solutions. This theory has a set of
topological static solutions which can be classified by the value of the topological
(baryon) charge

B = 1

24π2

∫
d3εijkTr(LiLjLk). (2)

The soliton solutions of this model are associated with baryon states with dif-
ferent baryon charges. For instance, the soliton with topological charge B = 1 is
considered as the nucleon.

Another chiral soliton model for the description of baryons was proposed by
O.V. Pavlovsky in Pavlovsky (2002). He considered a model with the Lagrangian

LChBI = −f 2
π Trβ2

(
1 −

√
1 − 1

2β2
LµLµ

)
, (3)

where β is the mass dimensional scale parameter of the model. The bag formation
of this theory is worked out in Pavlovsky (2003).

It is desirable that such a theory have stable and finite-energy soliton solutions.
The theory should be Lorentz- and chiral-invariant. The model (3) is motivated by
the work of Born and Infeld. Pavlovsky has directly used the form of Born-Infeld
action to set his model and derive the topological solitons.

In this article, we use, instead, a Lagrangian density quadratic in the field
tensor. Whatsoever nonlinear function of F 2 is used in the Lagrangian, one expects
(from a Taylor expansion of this function) to have a next-important term of second
order in F 2. Starting from such a Lagrangian, we first obtain spherically symmetric
solutions in the case of pure radial electric field. We also use this form of the
Lagrangian for an effective meson theory. We show that in the case of pure radial
electric field, the total energy of the field has a finite value, in spite of the mild
singularity in the E-field.

We will study the direct analogue of the nonlinear electrodynamics model
for a chiral field. The resulting chiral model does not have singularities and has
a set of stable topological solutions. We find the finite-energy soliton solutions
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of a spherically symmetrical configuration within this model, using numerical
calculations.

2. NONLINEAR ELECTRODYNAMICS

In this section, we introduce a nonlinear electrodynamics which shows attrac-
tive properties despite its simplicity. The total energy associated with the localized
charge is finite in free space. The proposed Lagrangian has the following form

L = −1

4
FµνFµν + λ(FµνFµν)2. (4)

where Fµν = ∂µAν − ∂νAµ as in the Maxwell’s electrodynamics and λ is the
constant parameter of the model. Obviously, the action (4) reduces to the usual
Maxwell form in the λ → 0 limit. In the case of a pure radial electric field, we find
electric field E as a function of spherical coordinate r by using the Euler-Lagrange
equation

∂µ

∂L
∂(∂µAν)

− ∂L
∂Aν

= 0. (5)

Substituting for L we obtain

∂µFµν = −J ν

c
, (6)

where c is the speed of light in free space and

J ν

c
= Fµν∂µ ln(8λFαβFαβ − 1). (7)

It is seen that the electromagnetic current is generated by the EM-field itself, as
expected in a NED. From now on, we use the Heaviside-Lorentz system of units.

Substituting Fi0 = Ei in (5) and considering the radial ansatz Er = E(r) we
obtain

E3(r) + E(r)

16λ
− C2

4r2
= 0, (8)

where C with the dimension [x]−2 is the constant of integration. By solving the
latter equation, we obtain

E(r) =

[(
72 C2 λ +

√
3 r4+1728C4 λ3

λ

)
λ2r

]2/3

− r2 3
√

3λ

12λr

[(
72 C2 λ +

√
3 r4+1728C4 λ3

λ

)
λ2r

]1/3
3
√

3. (9)

The field E(r) diminishes as r increases only for λ > 0 since the coefficient of the
leading term in the numerator is proportional to (λ2/

√|λ|) 2
3 − λ which vanishes



826 Mahzoon and Riazi

for positive values of λ. For simplicity, we investigate the asymptotic behavior of
the electric field, E(r), just for λ = −1. The electric field behavior near r = 0 is

E(r → 0) =
( C

2r

) 2
3

− 1

48

(
2r

C

) 2
3

+ 1

331776

(
2r

C

) 10
3

+ · · · (10)

and for large values of r , the electric field E(r) is proportional to 1/r2 as expected,

E(r → ∞) = 4

(C
r

)2

− 1024

(C
r

)6

+ 786432

(C
r

)10

+ · · · . (11)

Comparing the first term in (11) with the Maxwell’s electric field due to a point
charge, one can find the value of constant C. Since we have used the Heaviside-
Lorentz system, we have:

C2 = Q

16π
. (12)

It is an easy task to compute the T 00 component of the energy momentum tensor
T µν

T µν = ∂L
∂(∂µAρ)

∂νAρ − gµνL, (13)

where gµν is the metric tensor. Substituting for L we obtain

T 00 = 1

2
E2 − 4λE4 = T 00

Maxwell − 4λE4, (14)

which also reduces to the Maxwell form in the limit λ −→ 0. It is obvious from the
asymptotic behaviors (10), (11) of the electric field E that the integral of T 00 over
the whole space which is the total energy of the system, has a finite value and does
not diverge. Since the Coulomb force between two point charges can be attributed
to the E1.E2 term in the field energy density (Jackson, 1975), one expects that
the force between two localized solutions of the NED model at large inter-charge
distances should be inverse square. On small distances, however, deviations from
the inverse-square force is expected.

3. CHIRAL FIELD SOLITONS

In the previous section, we studied the properties of the proposed NED model
for the field of a localized electric charge in free space. Based on the results of the
previous section, we are motivated to use that form of the Lagrangian to make a
chiral field model in analogy with the work (Pavlovsky, 2002). The model should
have finite energy soliton solutions with integer values of the topological or baryon
charge, and in low energy limit it must reproduce the prototype Lagrangian (Zahed
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and Brown, 1986; Nikolaev, 1989)

Lpr = −f 2
π

4
TrLµLµ. (15)

We thus consider the Lagrangian

L = f 2
π Tr

(
−1

4
LµLµ + λ

(
LµLµ

)2
)

, (16)

where λ is the scale parameter of our model, and Lµ was defined in the introduction.
As usual, we use the spherically symmetric ansatz

U = eiF (r)n.τ , n = r
|r| . (17)

The energy of such a field is the functional

Eλ[F ] = −8πf 2
π

∫ ∞

0
�

(
λ� − 1

4

)
r2dr, (18)

where

� = F ′2 + 2 sin2 F

r2
. (19)

Using the minimum energy variational principle, we obtain the following differ-
ential equation for the amplitude F (r)

(
r2

(
12λF ′2 − 1

2

)
+ 8λ sin2 F

)
F ′′ + 8λ

(
2rF ′3 − sin2 F sin 2F

r2

)

− rF ′ + sin 2F

2
= 0. (20)

This nonlinear differential equation is a boundary value problem and can be
solved by numerical methods. By imposing proper boundary conditions F (0) =
Nπ where N ∈ Z and F (r → ∞) = 0, one can find numerical solutions. First, we
use the standard procedure to find asymptotic behavior near zero, (r = 0, F (0) =
Nπ )

F (r) = Nπ + ar − 2(16 λ a2 − 1)

15(40 λ a2 − 1)
a3r3 + O(r5), (21)

where F ′(0) = a.
Solutions with asymptotic (21) at origin are the Chiral Soliton solutions of

our model which are proposed to describe baryons. Their topological charge is
defined by equation (2) as usual. The solitons with baryon number B = 1, 2 and 3
are presented in Fig. 1. The scale parameter λ is fixed such that the solution with
B = 1 corresponds to a nucleon.
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Fig. 1. Solitons with B = 1, 2 and 3. Horizontal axis: r (in fm). Vertical axis: F (r).

The stability of the chiral soliton solutions can be easily checked by using
the procedure employed in proving Derrick’s theorem (Derrick, 1964). We rewrite
the energy integral as

E = 8πf 2
π (I1 + I2), (22)

where

I1 = 1

4

∫ ∞

0

(
F ′2 + 2 sin2 F

r2

)
r2dr, (23)

I2 = −λ

∫ ∞

0

(
F ′2 + 2 sin2 F

r2

)2

r2dr (24)

and F (r) is a localized solution of δE = 0. A necessary condition for a solution to
be stable is that the second-order variation δ2E ≥ 0. Define Fκ (r) = F (κr) where
κ is an arbitrary constant, and rewrite the energy integral for Fκ to obtain

Eκ = 8πf 2
π

∫ ∞

0

[
1

4

(
F ′

κ

2 + 2 sin2 Fκ

r2

)
− λ

(
F ′

κ

2 + 2 sin2 Fκ

r2

)2
]

r2dr

= I1

κ
+ κI2 (25)
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Let us change the variable of integration from r , to λr; whence
(

dEκ

dκ

)
κ=1

= −I1 + I2, (26)

(
d2Eκ

dκ2

)
κ=1

= 2I1. (27)

Since Fκ is a solution of δE = 0 for κ = 1, we must have(
dEκ

dκ

)
κ=1

= 0, I1 = I2

(
d2Eκ

dκ2

)
κ=1

= 2I1 = I2 > 0, (28)

since I2 is certainly a positive quantity. That is, δ2E > 0 for a variation corre-
sponding to a uniform stretching of the particle. Hence the solution F (r) is stable.

Before closing this section, let us consider the question of the behavior of
the spherically symmetric solutions with B. In the Skyrme model, E(B) ∼ B2

(Bogomolny and Fateev, 1983). In the present model, the situation is different.
The values of the total energy for different solitons B = 1, . . . , 10 are presented
in Table I. By interpolating these data it can be shown that the expression for E as
a function of B would have the form

E(B, λ = −1) 	 1.0731B3 + 4.3656B2 + 4.554B + 0.159. (29)

The graph corresponding to this fit is plotted in Fig. 2, together with the data from
Table I.

Table I. The Energy E(B, λ = −1) of Different Soli-
tons (Baryons)

Baryon charge, B Energy of solitons, E(λ = −1)

1 10.193
2 35.280
3 182.03
4 156.89
5 266.27
6 416.56
7 614.07
8 865.38
9 1177.00
10 1555.40
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Fig. 2. The energy E of different solitons as a function of baryon number B.

4. CONCLUSION

In this article, we introduced a nonlinear electrodynamics which admits a
finite value for the self energy of a point-like charge. A chiral model (which
corresponds to an effective chiral theory) was built with a similar form for the
Lagrangian. The resulting chiral solitons have finite energies. These solutions
were treated as baryon states.

The chiral solitons of our model were shown to be stable against radial
deformations by applying a scale transformation (Derrick, 1964). In models like
that of Pavlovsky’s (2002), the solitons’ stability is based on the stability of the
prototype Lagrangian (15) which has well-known stable static topological solitons
in 1+1 dimention (Polyakov and Belavin, 1975a,b).

In the present paper, we did not survey all aspects of the proposed model.
Non-spherical solutions and the corresponding properties of such solutions and
baryon interactions remain open questions. All of these questions should be the
themes for a future investigation.
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